Max. Marks: 70

Time: 3 hours

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, June 2024 Formal Language and Automata Theory

Roll No

(CSE & CSE-AIML)

	3 hours			arks: 70	
Note:	This que	estion paper Consists of 5 Sections. Answer FIVE Questions, Cho-	osing ON	IE Questio	n from
each S	ECTION	I and each Question carries 14 marks.			

		SECTION-I	BCLL	CO(s)	Marks
1	\boldsymbol{A}	Design DFA for the following over {a, b}	L3	CO-I	[7M]
		i) All strings containing not more than three a's.			
		ii) All strings that has at least two occurrences of b			
		between any two occurrences of a.			
	\boldsymbol{B}	Explain about central concepts of Automata Theory.	L2	CO-I	[7M]
	2	OR	22		[/1/1]
2		Construct the Moore machine to determine residue mod 3 and	L3	CO-I	[14M]
_		convert into Mealy machine.	LJ	CO-1	
		SECTION-II			
3	\boldsymbol{A}	Convert regular expression $(01^* + 1)$ to finite automata.	L3	CO-II	[7M]
3	B	Explain about Pumping Lemma.	L3 L2	CO-II	[7M]
	Ь	OR	112	CO-II	[/141]
4	\boldsymbol{A}	Explain the applications of regular expressions	L2	CO-II	[7M]
-	В	Construct the regular expression corresponding to the language	L3	CO-II	[7M]
	D	accepted by following DFA.	LJ	CO-11	[/141]
		accepted by following DI A.			
		$\bigcap_{i=1}^{n}$			
		(q_0) (q_1) (q_2)			
		0,1			
		SECTION-III			
5	\boldsymbol{A}	Explain the followings with examples.	L2	CO-III	[7M]
		i. Context free grammars			
		ii. Ambiguity in Grammars.			
	\boldsymbol{B}	The following generates prefix expression with operands x,y	L3	CO-III	[7M]
		and operators +,- and *.			
		$E \rightarrow + EE * EE - EE x y$			
		i. Find leftmost and right most derivations and a			
		derivation tree for the string +*-xyxy.			
		ii. Prove that this grammar is unambiguous.			
		OR			
6	\boldsymbol{A}	Discuss in detail about leftmost and right most derivation tree	L2	CO-III	[7M]
	_	with example.		~~	
	В	List and Explain application of context-free grammars.	L4	CO-III	[7M]

SECTION-IV 7 How to remove the ambiguity from the grammar? Explain \boldsymbol{A} **L3** CO-IV [7M] with example. Construct CFG without ε – production from the one which is \boldsymbol{B} **L3** CO-IV [7M] given below $S \rightarrow a \mid Ab \mid aBa$ $A \rightarrow b \mid \epsilon$ $B \rightarrow b \mid A$ OR 8 Define Chomsky Normal Form (CNF). Convert the following \boldsymbol{A} **L3** CO-IV [7M] grammar to CNF $S \rightarrow 0S0|1S1| \in$ Construct PDA from the following CFG \boldsymbol{B} L3 CO-IV [7M] $S \rightarrow aAA$ $A \rightarrow aS|bS|a$

		SECTION-V			
9	\boldsymbol{A}	Design a Turing Machine to accept	L3	CO-V	[7M]
		$L=\{WCW^{R} \mid W \text{ is in } (a+b)^{*}\}.$			
	\boldsymbol{B}	Write the properties of recursive and non-recursive	L2	CO-V	[7M]
		enumerable languages.			
		OR			
10	\boldsymbol{A}	Define post's correspondence problem and show that it is	L1	CO-V	[7M]

Discuss in detail about P and NP problems. L2 CO-V [7M]

undecidable.

В